Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643623

RESUMO

The global trend toward sustainable development, coupled with growing concerns about environmental pollution and the depletion of fossil energy resources, has contributed to the widespread implementation of biopolymers (BPs) as bio-solutions for geo-infrastructures stabilization. In this respect, previous attempts proved that soil treatment with BP can guarantee the strength improvement of geo-materials by satisfying environmental standards. However, the applications, mechanisms, and interactions of BPs within geo-environments need more investigations on their suitability for specific sites, long-term durability, and economic viability. The present study aims to provide an in-depth and up-to-date analysis of BPs and outline potential future paths toward BP applications. To this end, after examining the process of producing BPs, we investigate bio-physicochemical behavior and their function mechanism within the soil matrix. In addition, the impact of environmental conditions on soil stabilization with BPs is evaluated. Finally, some recommendations are offered for selecting the types and doses of BPs to improve soil against erosion and to obtain high hydrodynamic resistance. The results outline that bio-chemical mechanisms (including bio-cementing, bio-clogging, bio-encapsulation, and bio-coating) play significant roles in stabilizing cohesive and non-cohesive soil properties. Besides, the findings suggest that the efficacy of BPs depends upon various factors, including the composition and concentration of BPs, soil characteristics, and the magnitude of electrostatic and van der Waals forces formed during bio-chemo-reaction, biocrystallization, and bio-gel production. Between various BPs, using Xanthan gum (XG) and Guar gum (GG) exhibited optimal efficacy, enhancing mechanical strength by up to 300%. Furthermore, BPs concurrently reduced permeability, erosion, compressibility, and shrinkage characteristics. Applying BPs in soils improves germination and vegetation growth, lowers the wilting rate, and reduces soil acidity (considering their natural origin). Overall, selecting suitable BPs was found to be dependent on key factors, including temperature, curing time, and pH. The findings from this study can provide a scientific foundation for planning, constructing and preserving of bio-geo-structures in various construction sites.


Assuntos
Solo , Biopolímeros/química , Solo/química , Desenvolvimento Vegetal/efeitos dos fármacos
2.
Environ Sci Pollut Res Int ; 29(22): 32670-32701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220539

RESUMO

Soil polluted by oil and its derivatives is a critical environmental issue worldwide that jeopardizes ecological systems and causes geotechnical problems. This review paper focuses on the previous studies concerning the impacts of oil pollution on soil geotechnical properties. To this end, related academic literature on this topic was investigated and discussed. The findings of this study demonstrated that the addition of oil pollution in coarse-grained soils significantly reduces particle surface roughness. On the other hand, in fine-grained soils, it results in flocculation and secondary aggregation of clay particles, less aggregated and loose packing in the soil matrix, the formation of isometric pores, the formation of fissure-like pores, and an increase in mesoporosity. In general, it was found that the geotechnical properties of oil-polluted soils are mostly determined by the physicochemical and/or physical interactions between the soil and contaminant. Additionally, previous research has demonstrated that oil pollutants alter the geotechnical properties of cohesive and non-cohesive soils significantly, including the Atterberg limits, particle-size distribution, compaction behavior, unconfined compressive strength, friction angle, cohesion, hydraulic conductivity, and consolidation characteristics. However, no general pattern could be established for the majority of them. Besides, it was found that the degree of geotechnical property alteration of oil-polluted soil is strongly influenced by the soil type and features, as well as the quantity, type, and chemical composition of oil pollutants.


Assuntos
Poluição por Petróleo , Poluentes do Solo , Argila , Poluição Ambiental , Solo/química , Poluentes do Solo/química
3.
J Environ Qual ; 50(3): 768-781, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33576032

RESUMO

Because long-term leachate penetration through a hydraulic barrier is unavoidable, active-passive liners are widely used to mitigate the migration of potential contaminants. Geopolymerization represents a viable method for metals removal, which simultaneously improves the properties of local clay to compensate for the lack of suitable soil in the design of active-passive liners. This study investigated how clay-fly ash geopolymers enhance the sorption of divalent lead [Pb(II)] and divalent zinc [Zn(II)] from leachate compared with an untreated clay. Two clay-fly ash geopolymers were synthesized from the mixtures containing 50 and 60% fly ash to the total solid mass and then activated by 10 M NaOH solutions. The influence of Na/fly ash ratios and activator content was also examined. The results indicate that a fly ash-based geopolymer could be a simple solution to increase the sorption capacity of local clay. A lower ratio of Na/fly ash and activator content, resulting in a higher porosity, led to a better performance for metal removal. According to the results of sorption isotherms and batch experiments, Pb(II) and Zn(II) exhibit different sorption behaviors affected by the compositions of synthesized clay-fly ash geopolymers, which could be adjusted to reach a proper sorption capacity. The results of the kinetic study also show that the heterogeneous matrix of the clay-fly ash geopolymers with different porosities led to mutual cooperation between reaction and diffusion-controlled steps for metal removal.


Assuntos
Cinza de Carvão , Chumbo , Argila , Polímeros , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA